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Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of 

machine learning-based hydrological models requires advanced skills from diverse fields, such as programming and 

hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning 

models is a time-intensive process. In this study, we developed a python-based framework that simplifies the process of 15 

building and training machine learning-based hydrological models and automates the process of pre-processing of hydrological 

data and post-processing of model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in 

the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different 

HRU discretization definitions. The post-processing utilities help in interpreting the model’s results from a hydrological point 

of view. This framework will help increase the application of machine learning-based modeling approaches in hydrological 20 

sciences. 

1 Introduction 

Theory-driven modeling approaches have been traditionally applied to simulate hydrological processes (Remesan and Mathew, 

2015). However, with advancements in computation power and data availability, there has been a surge in the application of 

data-driven approaches to model hydrological processes (Lange and Sippel, 2020). Data-driven approaches that involve time 25 

series input data can be used to build several types of hydrological models. Various machine learning approaches have been 

successfully applied to predict surface water quality (Chen et al., 2020a), estimate stream flow (Kratzert et al., 2018), simulate 

surface and sub-surface flow (Abbas et al., 2020), forecast evapotranspiration (Ferreira and da Cunha, 2020), and model 

groundwater flow and transport (Chakraborty et al., 2020). Deep learning, which includes the application of large neural 

networks, has shown promising results for hydrological modeling (Moshe et al., 2020). A typical workflow of data-driven 30 

https://doi.org/10.5194/gmd-2021-139
Preprint. Discussion started: 17 June 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

 

modeling comprises data collection, pre-processing, model selection, training of the algorithm with optimized 

hyperparameters, and deployment. 

Recent advances in the field of data science have resulted in the growth of Python packages, which assist in accomplishing 

machine learning and deep learning tasks. According to the latest survey on Kaggle, an online platform for machine learning 

competitions, the most popular libraries among data scientists are TensorFlow (Abadi et al., 2016), Pytorch (Paszke et al., 35 

2019), Scikit-learn (Pedregosa et al., 2011), and XGBoost (Chen and Guestrin, 2016). These libraries have accelerated research 

in the field of machine learning owing to their simple user interface and robust implementation of difficult algorithms such as 

back propagation (Chollet, 2018). However, feature engineering, data pre-processing, and post-processing of results are still 

the most time-consuming tasks in building and testing machine learning models (Cheng et al., 2019). Feature engineering 

includes modifying existing input data and generating new features based on existing data such that it improves learning using 40 

data-driven algorithms. This also incorporates background knowledge and context into the model in order to assist the 

algorithm in learning the underlying function. Infusion of background knowledge, such as basin architecture (Moshe et al., 

2020) and land use (Abbas et al., 2020) in data-driven hydrological modeling leverages the algorithm and enhances its 

performance (Kratzert et al., 2018). The pre-processing step involves modifying the available data in a form suitable for feeding 

into the learning algorithm. (Nourani et al., 2020) showed how different smoothing and de-noising functions affect the 45 

performance of artificial neural networks for forecasting evaporation. The post-processing step includes the calculation of 

performance metrics, visualization of results, and interpretation.   

Recently, several frameworks have been developed to accelerate the process of building and testing machine learning models, 

such as Ludwig (Molino et al., 2019) and MLflow (Zaharia et al., 2018). However, these frameworks are too general and do 

not deal with the intricacies of time series and hydrological modeling. Several studies have looked at pre-processing, building, 50 

training, and post-processing of machine learning models with time series data. These include libraries such as sktime (Löning 

et al., 2019), Seglearn (Burns and Whyne, 2018), Tslearn (Tavenard et al., 2020), tsfresh (Christ et al., 2018), and pyts (Faouzi 

and Janati, 2020). Some libraries have also been developed with a focus on hydrological issues. Pastas (Collenteur et al., 2019) 

is a library dedicated to analyzing groundwater time series data. NeuralHydrology (Kratzert et al., 2019) allows the application 

of several long short-term memory (LSTM)-based models for rainfall runoff modeling. However, most of these libraries either 55 

focus on the processing of data and feature extraction from time series or building and training of the model. A framework that 

combines pre-processing, feature extraction, building and training, post-processing of model results, and interpretation of data-

driven models, particularly for solving hydrological problems, is missing.  

For the advancement of machine learning in the field of hydrology, experimentation with readily available and fully 

documented benchmark datasets is required (Leufen et al., 2021). The collection of hydrological data is usually expensive and 60 

time-consuming. Several hydrological datasets are publicly available on different online platforms (Coxon et al., 2020). 

Although these datasets are documented and organized, they are not usually in a form that can be directly used in machine 
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learning algorithms. Therefore, there is a need for a uniform and simplified interface to access and feed hydrological data to 

machine learning algorithms.  

In this study, we developed a new framework for fast and rapid experimentation to develop data-driven hydrological models. 65 

In this study, we present AI4Water, a Python-based framework that assists in machine learning and deep learning-based 

modeling with a focus on hydrology. The specific objectives of AI4Water were to provide a uniform and simplified interface 

for 1) access and streaming of freely available datasets to data-driven algorithms, 2) pre-processing of hydrological data, 3) 

automatic feature extraction from hydrological data, 4) automatic model selection and its hyperparameter optimization, and 5) 

post-processing of results for visualization and interpretation of models. 70 

2 Workflow and model structure 

The core of AI4Water is Model class, which implements data preparation, building, and training of the model, and makes 

predictions from the model (Fig. 1). However, AI4Water includes several utilities for data pre-processing, feature generation, 

post-processing and visualization of results, hyperparameter optimization, and model comparison. All of these utilities can be 

used with AI4Water as well as independently. The Datasets utility helps in fetching and pre-processing several open-source 75 

datasets to be used in machine learning models. The SpatialProcessing utility allows distribution of weather data among 

hydrologic response units (HRUs) using different HRU discretization schemes. The ETUtil sub-module helps calculate 

potential evapotranspiration using various theoretical methods. The SeqMetricss module calculates several time series errors 

for regression and classification problems. HyperOpt assists in the implementation of various hyperparameter optimization 

algorithms. The Experiment class can be used to compare different machine learning models. Finally, AI4Water has an 80 

Interpret utility that can be used to interpret the model’s results. 

The large number of utilities in AI4Water increases the number of underlying libraries. AI4Water is built on top of Scikit-learn, 

CatBoost, XGBoost, and LightGBM libraries to build classical machine learning models. These models have been used in 

several hydrological studies (Ni et al., 2020; Huang et al., 2019; Shahhosseini et al., 2021). To build deep learning models 

using neural networks, AI4Water uses a popular deep learning platform called TensorFlow (Abadi et al., 2016). A complete 85 

list of dependencies for AI4Water is presented in Table 1. Table 1 is divided into two parts. The first half shows the minimal 

requirements for running the basic utilities, which include the model’s building and training, and making predictions from the 

model. The second part of Table 1 consists of an exhaustive list of dependencies required to utilize all the functionalities of 

AI4Water. However, these utilities are optional and do not hinder basic package functionality. Table 1 shows the minimum 

required version for the underlying libraries. AI4Water handles the version conflicts of the underlying libraries, thus making 90 

it version-independent of its underlying libraries. This means that the user can use any version greater than the version number 

given in Table 1. 
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The success of machine learning is proportional to testing various hypotheses by training and testing machine learning models 

and analyzing the results (Zaharia et al., 2018). This can quickly lead to a large number of output files. AI4Water handles this 

by automatically saving all the model-related files starting from model creation to pre-processing until post-processing of each 95 

output in the respective folders. A detailed output directory structure is shown in Fig. 2. Upon every model run, a directory is 

created whose name is the date and time when the model is created. This naming convention allows for a simple and distinct 

directory structure for every new model. This parent directory is called “model path” and contains several sub-folders and files 

which are related to model configuration, model training, and post-processing of results (Fig. 2a). The results for each target 

variable are saved in a separate folder. Additionally, the files related to the model’s optimized parameters and interpretations 100 

are saved in a separate directory. The saved configuration file along with the weights can later be used to reproduce the model’s 

results. In case of hyperparameter optimization, a directory named “hpo path” is created, which consists of several “model 

paths”. Each of these “model paths” correspond to each iteration of the optimization algorithm (Fig. 2b). In case of 

Experiments, when different models are compared, a separate “hpo path” is created for each of the models being compared. 

Fig. 2c shows the output file structure for an Experiment when different machine learning algorithms are compared. This 105 

ordered arrangement of results facilitates the fast comparison and analysis of the results. 

2.1 Loading and saving models in a readable json file 

All features of AI4Water can be accomplished using a configuration file. The configuration file (config.json) of AI4Water 

consists of a human-readable json file. All the information regarding pre-processing of data, building and training of the model, 

predictions, and post-processing results is written in this file. This file is generated every time a new model is built. One of the 110 

advantages of this configuration file is that any user can build and run the models without having to write the code explicitly. 

All examples presented in this study can be run using the corresponding configuration files. Fig. 3 shows examples of the three 

configuration files. Fig. 3a, shows an LSTM-based model built for rainfall-runoff modeling using the CAMELS (Fowler et al., 

2021) dataset. Fig. 3b and c show the usage of the temporal fusion transformer and XGBoost models for the same task. The 

user can define commands such as the input and output features to use or the training duration for the model. All 115 

hyperparameters of the model can also be set using this configuration file. 

2.2 Datasets 

The first step in building a data-driven hydrological model is to obtain large and diverse data. There have been several efforts 

by the hydrological science community to build hydrological datasets that are publicly available. For example, for rainfall-

runoff modeling, there exists the CAMELS dataset for several countries (Addor et al., 2017). The CAMELS dataset consists 120 

of daily weather data and streamflow records for multiple catchments. Another large rainfall runoff dataset is LamaH (Klinger 

et al., 2021), which consists of observations from 859 catchments in Europe. While the number of such open source datasets 

is large, the use of these data sources is slow as each database is available on different platforms and implements a different 
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application programming interface (API). A core function of AI4Water is to provide a simple and homogeneous API to feed 

these datasets directly into machine learning models. Fig. 3 shows the usage of the CAMELS_AUS dataset, where the user 125 

needs to define only the name of the dataset and the input and output variables. This simple interface will help exploit the use 

of these datasets. Furthermore, benchmarking open-source datasets will likely accelerate the progress of machine learning in 

hydrological science. A brief summary of the rainfall-runoff datasets available in AI4water is given in Table 2. 

2.3 Preprocessing 

2.3.1 Exploratory data analysis 130 

A crucial step in data-driven hydrological modeling workflow is the visualization of the data. This step assists in understanding 

the data, finding outliers, selecting relevant features, and guiding the machine-learning-based modeling process. AI4Water 

provides an eda function which can be employed to conduct a comprehensive analysis of input and output data. For example, 

the correlation plots illustrate which input variables are more correlated with each other. Heatmaps show the amount and 

position of the missing values. Histogram and box-whisker plots depict the distributions of both the input and output variables. 135 

This function can also perform a principal component analysis of the input data and plot the principal components. This helps 

in understanding the dynamics of the input data and filtering the relevant features.  

2.3.2 Transformations 

The transformation of data includes scaling, standardizing, and transforming the data onto a different scale. Transforming the 

data can significantly affect the performance of a data-driven model. The scikit-learn library provides several transformation 140 

functions such as minmax, standardscaler, robust, and quantile. In addition, several other transformation methods such as 

empirical mode transformation (EMD), ensemble empirical mode transformation (EEMD), wavelet transform (Sang, 2013), 

and fast Fourier transform (Sang et al., 2009) have been found to improve the performance of hydrological models. AI4Water 

provides a uniform interface for all of these transformation methods under the sub-module Transformations. The user can 

apply any of the available transformations to any of the input features by using a simplified and uniform interface. The 145 

predicted features were transformed back after the prediction. Fig. 4 shows a comparison of different transformations using a 

Taylor plot (Taylor, 2001). These results were generated by modeling in-stream E. coli concentrations in a small Laotian 

catchment (Boithias et al., 2021) using LSTM (Hochreiter and Schmidhuber, 1997). The input data was precipitation, relative 

humidity, air temperature, wind speed and solar radiation. 

2.3.3 Imputation 150 

Missing values are often found in real-world datasets. However, missing data cannot be fed to machine-learning algorithms. 

AI4Water provides various solutions for handling missing data that can be used using the impute method. These include 1) 

using the pandas library (McKinney, 2011) scikit-learn library-based methods, or 3) using dedicated algorithms to fill the 
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missing input data. The pandas library allows the handling of missing values either by filling the missing values using the 

fillna method or interpolating the missing values using the interpolate method. Both these methods can be seamlessly used 155 

with the impute method in AI4Water. Several imputation methods for filling missing values are available in the scikit-learn 

library. These methods include KNNImputer, IterativeImputer, and SimpleImputer. AI4Water provides a uniform interface for 

all imputation methods without hindering their functionality. 

Several other libraries have been developed that have dedicated algorithms for imputing missing time series data. These include 

fancyimpute (Rubinsteyn and Feldman, 2016) and transdim (Chen et al., 2020b). The fancyimpute library provides several 160 

state-of-the-art algorithms such as SoftImpute (Mazumder et al., 2010), IterativeSVD (Troyanskaya et al., 2001), 

MatrixFactorization, NuclearNormMinimization (Candès and Recht, 2009), and Biscaler (Hastie et al., 2015). The transdim 

library provides algorithms based upon neural networks for filling missing data. AI4Water provides a simple interface for using 

these libraries with their full functionalities, using the impute method. 

2.4 Missing labels 165 

In supervised machine-learning problems, the training data consist of examples. Each example consists of one or more input 

data and a corresponding label, which is the true value for the given example. Similar to the input data, it is common for the 

labels to have missing data. Although the missing values in target features can be handled similarly to that of input features, 

which has been explained in Section 2.3, this can lead to unrealistic results, particularly when the number of missing values is 

large. AI4Water allows the user to exclude examples with missing labels during model training. For multi-output prediction, 170 

one can encounter situations in which all target variables are not available for a given example. AI4Water allows the user to 

handle such situations by masking the missing observations during loss calculation. On the other hand, the user can also choose 

to skip these examples, though this can reduce the number of examples in water quality problems where the number of samples 

is already very small. 

2.5 Resampling 175 

Modeling hydrological processes at high temporal resolutions can result in a large amount of data (Li et al., 2021). Training 

with this large input data can be computationally expensive. However, temporally coarse input data contain little information. 

AI4Water handles large amount of data by either resampling the data at a lower temporal resolution using the Resample class, 

or by skipping every n-th input data, where ‘n’ represents the time-step. The later can be achieved by setting the value of the 

input_steps argument to a value greater than 1. The default value of this argument is 1, which results in the use of all input 180 

data. 

https://doi.org/10.5194/gmd-2021-139
Preprint. Discussion started: 17 June 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

 

2.6 Feature generation 

The incorporation of scientific knowledge into machine learning models is an emerging paradigm for constraining predictions 

from machine learning models to reality (Wang et al., 2020). The guiding principle of AI4Water is to integrate domain-specific 

knowledge and hydrological data. AI4Water automates the calculation of several features and their inputs to the machine 185 

learning algorithm. The input data requirement for the calculation of these features is minimal as they are calculated from the 

raw data. The calculated features are in the form of a time series, which are then directly given as input to machine learning 

algorithms. The following sections describe the feature generation process in more detail. 

2.6.1 Land use change and HRU discretization 

In rainfall-runoff modeling, the method of discretization of the HRU plays an important role in many theory-driven models 190 

such as the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011) and Hydrological Simulation Program FORTRAN 

(HSPF) (Donigian Jr et al., 1995). An HRU is a building block of a process-driven hydrological model in which all the 

processes are simulated. The area and formation of an HRU depend on its definition. For example, in the HSPF model, an 

HRU is defined as a unique land use in a unique sub-basin. On the other hand, the SWAT model considers slope classes and 

soil type distributions in an HRU. In catchments, which undergo changes in land use over time, the corresponding HRUs also 195 

change with time. Temporal changes in HRUs are a major challenge in most process-driven models (Kim et al., 2018). 

However, it has been shown that machine learning models can easily incorporate land-use changes with time and dynamic 

HRU calculations (Abbas et al., 2020). AI4Water contains a sub-module, MakeHRUs, which helps in distributing time series 

weather data into HRUs using different HRU definitions. Fig. 5 shows two discretization schemes that combine land use, soil 

type, and sub-basin. However, the user can also add other spatially varying features, such as slope, in the HRU definition. A 200 

complete list of the HRU definitions is provided in Table S1. Fig. 6 illustrates the HRU variation with time in a Laotian 

catchment (Abbas et al., 2020). The HRUs shown in Fig. 6 are defined as a unique land use with a unique soil type. Thus, 

every HRU has distinct land use and soil characteristics. As there are four land-use types and three soil types in the catchment, 

the total number of HRUs was 12. We can observe how the area of certain HRUs, e.g., “Alisol_Fallow”, decreases with time 

at the expense of other HRUs (Fig. 6a). The relative contributions of each HRU for the years 2011, 2012, 2013, and 2014 is 205 

illustrated in Fig. 6b–e, respectively. 

2.6.2 Evapotranspiration 

The amount of evapotranspiration is an important factor that affects the total water budget in a catchment. The impact of 

evapotranspiration process representation in rainfall-runoff models has been studied extensively (Guo et al., 2017). Several 

potential and reference evapotranspiration calculation methods are available in the literature. AI4Water contains sub-module 210 

‘ETUtil’ which can be used to calculate the potential evapotranspiration using various methods. These include complex 

methods such as Penman-Monteith (Allen et al., 1998), which require large input variables, and simplified methods such as 
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Jensen and Haise (Jensen and Haise, 1965), which only depend on temperature. The ETUtil can furthermore calculate potential 

evapotranspiration at various time intervals, from 1 min to 1 yr. The names of the 22 evapotranspiration methods available in 

ETUtil and their data requirements are summarized in Table S2. The CAMELS Australia dataset (Fowler et al., 2021) comes 215 

with pre-calculated potential evapotranspiration using the Morton (Morton, 1983) method. We compared this method with 

three different potential evapotranspiration calculation methods using ETUtil, as depicted in Fig. 7. 

2.7 Hyperparameter optimization 

The hyperparameters of a machine learning algorithm are the parameters that remain fixed during model training and 

significantly influence its performance (Chollet, 2018). Thus, the choice of hyperparameters plays an important role in 220 

evaluating the performance of machine learning algorithms. Some of the most popular approaches for optimizing 

hyperparameters are random search, grid search, and the Bayesian approach. Random search involves randomly selecting 

parameters from the given space for a given number of iterations. Grid search, on the other hand, comprehensively explores 

all possible combinations of hyperparameters in the hyperparameter space. Although grid search can ensure global minima, 

the number of iterations increases exponentially with an increase in the number of hyperparameters. This renders the grid 225 

search practically unfeasible for deep neural network-based models, which are computationally expensive. The two commonly 

used Bayesian approaches are Gaussian processes (Snoek et al., 2012) and the tree of Parzen estimators, (TPE) (Bergstra et 

al., 2011). 

The libraries used to implement these algorithms are hyperopt (Bergstra et al., 2013), scikit-optimize (Fabisch et al., 2018), 

optuna (Akiba et al., 2019), and scikit-learn (Pedregosa et al., 2011). These libraries implement different algorithms with 230 

different strengths. The scikit-optimize library allows the application of the Bayesian optimization approach using Gaussian 

Processes. The scikit-learn library can be used for random and grid-search-based approaches. The hyperopt module assists in 

Bayesian optimization using TPEs. The HyperOpt sub-module in AI4Water provides a uniform interface to interact with all of 

the aforementioned libraries. The integration of HyperOpt with its underlying modules not only complements the underlying 

optimization algorithms but also adds additional functionality, such as visualization. For example, the importance of 235 

hyperparameters is plotted using the functional analysis of variance (fANOVA) method proposed by (Hutter et al., 2014). 

We demonstrate the use of the HyperOpt sub-module of AI4Water for optimizing the hyperparameters of an LSTM-based 

neural network for rainfall-runoff modeling. The input data consisted of climate data, whereas the target was streamflow. For 

this example, we used CAMELS data from a catchment in Australia (Fowler et al., 2021). We compared the performance of 

random search, grid search, and two Bayesian algorithms based on Gaussian Processes and TPEs. The convergence plots of 240 

all four algorithms are shown in Fig. 8. The Bayesian approach using Gaussian processes was found to be the most useful for 

minimizing the objective function. The objective function was the minimum of the validation loss. We also observed that grid 

search, despite a large number of iterations, did not perform better than the other three methods.  
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2.8 Model comparison with Experiment 

AI4Water consists of an Experiment sub-module, which makes it easier to compare different machine learning models. The 245 

basic purpose of the Experiment class is to compare different models by optimizing their hyperparameters. This is made 

possible as the Experiment class encompasses the HyperOpt class, which in turn encompasses the Model class (Fig. 9). Thus, 

the Experiment class can be used for combined algorithm selection and hyperparameter optimization (Thornton et al., 2013). 

The results from the Experiment class are organized within an “exp path” directory (Fig. 2). The Experiment class can be sub-

classed to compare any number and type of models. It consists of three sub-classed experiments: MLRegressionExperiment, 250 

MLClassificationExperiment, and TransformationExperiment. The MLRegressionExperiment class runs and compares 

approximately 50 different classical machine learning algorithms for a regression task. The MLClassificationExperiment class 

compares classical machine learning algorithms for a classification problem. The TransformationExperiment class can be used 

to compare the application of different transformation techniques (Sect. 2.3.1) on different input and output features. 

We conducted an experiment to compare the performance of classic machine learning algorithms in predicting antibiotic-255 

resistant genes (ARGs) at a recreational beach (Jang et al., 2021b). The results of this experiment are shown in Fig. 10, which 

compares the correlation coefficients for the training and test sets. It can be seen that some algorithms can yield an R2 as high 

as 0.65. Other algorithms provide training R2 as high as 1.0, which indicates overfitting. In particular, we observed strong 

overfitting in the case of the decision tree regressor and Gaussian process regressor. It can also be inferred from Fig. 10 that 

ensemble methods such as AdaBoost (Freund and Schapire, 1997), gradient boosting (Friedman, 2001), bagging (Ho, 1998), 260 

extra trees (Geurts et al., 2006), and random forest (Liaw and Wiener, 2002) yield better performance than other methods. We 

also observed that simple linear models such as Lars, Lasso, and multi-layer perceptron are not able to model the dynamic and 

complex functions of the ARG distribution at the beach. On the other hand, complex non-linear models such as CATBoost 

(Prokhorenkova et al., 2018), XGBoost (Chen and Guestrin, 2016), and light gradient boosting machines (Ke et al., 2017) are 

able to adequately capture dynamic features related to the ARG distribution. We also observed that algorithms with cross-265 

validation performed better than their counterparts without cross-validation. 

2.9 Post processing 

2.9.1 Visualizing results 

The interpretation of the results of machine learning models is an area of active research. For classical machine learning 

algorithms, interpretation tools include the plotting of decision trees or input feature importance. For neural network-based 270 

models, explainability is considered an even bigger challenge. AI4Water consists of a sub-module called Interpret, which can 

be used to plot interpretable results. The Interpret class takes the trained AI4Water’s model as input and plots all possible 

results, which can help explain the model’s behavior. The exact type of plots generated by the Interpret sub-module depends 

on the algorithm used by the model. For neural network-based models, which consist of a layered structure, the Interpret sub-
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module plots all the trained weights, the outputs of each layer, the gradients of weights, and the gradients of the activations of 275 

neural networks. This also includes plotting attention weights if the model consists of an attention mechanism. AI4Water 

automatically plots the results of the model when a model is used for prediction. These include the scatter and line plots of 

each target variable. 

 We demonstrate this by using a dual-stage attention model (Qin et al., 2017) for daily rainfall-runoff modeling in catchment 

number 401203 in the CAMELS Australia dataset (Fowler et al., 2021). The input data consisted of evapotranspiration, 280 

precipitation, minimum and maximum temperatures, vapor pressure, and relative humidity. The dual-stage model showed 

significant performance during training (𝑅2 = 0.93) and test (𝑅2 = 0.87), as shown in Fig. S1. The dual-stage attention model 

highlights the importance of the input variables for prediction. The attention weights for each of the input variables are shown 

in Fig. S2–S4. From these figures, we can infer that the highest attention is given to precipitation followed by 

evapotranspiration. Furthermore, we also observed that the input of the previous 3–4 days was the most important. This can 285 

be attributed to the higher attention weights during the first 3–4 lookback steps in these figures. We also observed periodic 

changes in attention weights for all input variables, which can be attributed to the seasonal variations of input variables. 

2.9.2 Performance metrics 

Performance metrics are a vital component of the evaluation framework for machine learning (Botchkarev, 2018). There are 

two major types of performance metrics related to the evaluation of a model’s forecasting ability. These include scale-290 

dependent and scale-independent error metrics. Scale-dependent metrics, such as mean absolute error, provide a good estimate 

of a single model’s performance, but they cannot be used across the models because of their scale dependency (Prestwich et 

al., 2014). Scale-independent error metrics are more useful when comparing the performance of various models (Hyndman 

and Koehler, 2006). However, certain scale-independent error metrics cannot be defined, such as percentage errors or relative 

errors (Hyndman, 2006). The choice of a performance metric to evaluate the model depends on the problem definition and 295 

model objectives (Wheatcroft, 2019). AI4Water calculates over 100 regression metrics and numerous classification metrics to 

help the user analyze the general characteristics of the forecasts. These performance metrics are sub-packaged under 

SeqMetrics in AI4Water. These metrics are calculated automatically for all the target variables whenever a model is used for 

prediction using the predict method. The metrics are stored in a json file inside the path of the model (errors.json in Fig. 2). 

The names of the performance metrics calculated by AI4Water are listed in Table S3. Additionally, several statistical 300 

parameters of the predicted variable were calculated and stored in this json file.  

3. Advanced usage 

AI4Water was built using the object-oriented programming (OOP) paradigm. Its core logic was implemented by the Model 

class. The use of OOP allows a user to customize any steps of model building, training, or testing by sub-classing the Model 
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class. This may include the implementation of a custom training loop or a customized loss function. Similarly, the pre-305 

processing and data preparation steps implemented in the Model class can also be overwritten for specific usages. Additionally, 

AI4Water exposes the underlying machine learning libraries such as TensorFlow and scikit-learn to the user. Thus, users can 

directly use these libraries and implement the desired configuration. However, this requires a deeper understanding of the 

underlying libraries. 

4. Test coverage and continuous integration 310 

AI4Water version 1.0 was tested with continuous integration tools with GitHub Actions to ensure that it passes all the written 

tests and can be installed on computers. The tests were conducted on Windows and Linux-based operating systems. In addition, 

we tested the package on Python versions 3.6, 3.7, and 3.8. The package was also tested with TensorFlow versions 1.14 and 

above.  

5. Limitations and scope for expansion 315 

 The current version of AI4Water was designed only for supervised learning problems. However, there has been 

growing interest in unsupervised machine learning models, such as generative adversarial networks (GANs) and 

reinforcement learning. GANs have been shown to exhibit high performance for time series-related tasks such as 

filling missing data (Luo et al., 2018) or generating new high-resolution data (Chen et al., 2019). This aspect of GANs 

can be useful in water quality modeling, where data collection is costly and missing observations are common. 320 

Reinforcement learning can be applied to optimal policy design in hydrological systems, such as scheduling the 

release of water from a dam (Sit et al., 2020).  

 Another limitation of AI4Water is the choice of the underlying libraries to build neural networks. Currently, AI4Water 

employs TensorFlow platform to build neural network layers in deep learning models. However, there are several 

other platforms for building neural network-based models, such as PyTorch (Paszke et al., 2019). Support for these 325 

platforms will increase the diversity of models that can be implemented using these platforms. 

 AI4Water was designed for the rapid testing and experimentation of deep learning models. However, it should be 

noted that the current version of the framework is not suitable for the deployment of deep learning models in 

production.  

 As all the options to use AI4Water are accommodated in a configuration file, this makes it suitable for developing a 330 

graphical user interface (GUI. Adding GUIs will further widen the user-base of AI4Water by being accessible to non-

programmers.   
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6. Conclusion 

Modeling hydrological processes using machine learning requires the development of a data pipeline that encompasses data 

retrieval, feature extraction, visualization prior to training, building, training, and testing the machine learning model, and 335 

visualization and interpretation of the model’s results. The AI4Water software introduced in this work was designed to facilitate 

the development, reuse, and reproducibility of machine learning models for applications in hydrology. AI4Water was designed 

to integrate the domain-specific aspects of hydrological modeling with the professional level of machine learning and data 

processing software already developed and used by the Python community. We demonstrated the applicability of AI4Water 

with supervised learning examples related to hydrological modeling. Further development of the package is suggested with 340 

new features that may make AI4Water more versatile. The platform is expected to be practical for a wide range of users 

interested in hydrological modeling. 

Code and data availability 

The AI4Water source code can be found in a publicly available GitHub repository (https://github.com/AtrCheema/AI4Water) 

and its version 1.0 is archived at https://zenodo.org/record/4904517. The user manual is built into the source code Docstring 345 

and compiled into a “read the docs” web page (https://ai4water.readthedocs.io/en/latest/) using the MKDocs (Christine, 2014) 

software. The Jupyter notebooks replicating the examples described in the manuscript are available in the “examples” 

directory.  
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  530 

Tables 

Table 1. Complete list of third-party Python libraries, which are used by AI4Water. The first half the table enlists those libraries 

which are required while the second half consists of those libraries which are optional. 

Library Name Version Usage 

numpy > 0.15 array processing 

pandas > 0.22 array processing 

matplotlib >0.12 visualization 

h5py >0.15 storage 

seaborn >0.18 visualization 

scikit-learn > 0.22 building classical machine learning models 

tensorflow > 1.14 building layers of neural networks 

xgboost >1.2 implementing XGBoost based algorithms 

catboost >0.23 implementing CatBoost based algorithms 

lightgbm >1.5 implementing Light Gradient Boost based algorithms 

tpot >4.5 implementing tpot algorithm 

imageio >2.3 spatial processing of shape files 

shapely >0.15 spatial processing of shape files 
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pyshp >0.45 spatial processing of shape files 

plotly >0.23 extended visualization 

 

Table 2. Name and attributes of open source datasets included in AI4Water. 535 

Dataset Name 
Number of 

catchments 

Number of 

Variables 

Number of 

Observations 
Location 

CAMELS_AUS 222 23 21184 Australia 

CAMELS_BR 593 17 14245 Brazil 

CAMELS_CL 516 12 38374 Chile 

CAMELS_GB 671 10 16436 Britain 

CAMELS_US 877 33 12784 United States of America 

LamaH 859 5 12775 Europe 
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Figures 

 

Figure 1: Conceptual framework of hydrological modeling using AI4Water. AI4Water consists of modules for pre-processing and 540 
post-processing. The names of the modules are written in italic. The pre-processing steps involve collecting data, conducting 

exploratory data analysis on data, and generating new features from the data. The core of the model consists of building, training, 

and predicting. After this step, the predicted steps are used for visualization, performance comparison, and model interpretation. 
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 545 

 

Figure 2: Output directory structure of AI4Water. A “model path” (a) is created upon creation of a new model. An “hpo path” (b) 

is created during hyperparameter optimization. An “exp path” (c) is created when several models are compared during an 

experiment. The “hpo path” consists of several “model paths” and an “exp path” consists of several “hpo paths”. 
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550 
Figure 3: Examples of declarative model definition in a config.json file. a) shows an example of an LSTM-based model using the 

CAMELS_AUS data (Fowler et al., 2020). b) and c) show contents of configuration file for using temporal fusion transformer (Lim 

et al., 2020) and XGBoost (Chen et al., 2018) for rainfall-runoff modeling using CAMELS_AUS data, respectively.  

 

 555 
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Figure 4: Comparison of different transformations of output data on the performance of a neural network on the simulation of in-

stream E. coli concentration in a watershed in Lao PDR.  
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 560 

Figure 5: Example of HRU discretization schemes by combining a): sub-basins and land uses and b) by combining sub-basins and 

soil types. 
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Figure 6: Discretization of a catchment in Loas (Boithias et al., 2021) according to the HRU definition of “unique land use in unique 

soil”. The catchment consists of three soil types and four land use types. The soil types are Alisol, Luivsol and Leptosol while the 565 
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land use types are Fallow, Forest, Teak, and Crop. The combination of soil types and land use types results in 12 distinct HRUs. (a) 

shows annual variation of these 12 land use types while (b)–(e) show the percentage area of HRUs in the catchment in 2011, 2012, 

2013, and 2014, respectively. 

 

Figure 7: Comparison of various evapotranspiration methods for the CAMELS_AUS dataset. CAMELS_AUS dataset comes with 570 
Morton method while the remaining three methods are calculated by ETUtil sub-module of AI4Water. 
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Figure 8: Comparison of four optimization algorithms for optimizing hyperparameters of an LSTM-based model for rainfall-runoff 

modeling. GP represents Bayesian with Gaussian Processes while TPE stands for tree of Parzen estimators. Grid and Random stand 575 
for grid search and random search-based optimization, respectively. The x-axis shows the number of function evaluations while min 

f(x) in the y-axis represents the objective function, which takes x hyperparameters and returns the minimum of validation loss. 

https://doi.org/10.5194/gmd-2021-139
Preprint. Discussion started: 17 June 2021
c© Author(s) 2021. CC BY 4.0 License.



28 

 

 

 

Figure 9: Hierarchy of model building and comparison in AI4Water. The Model involves building, training, and prediction. The 

hyperparameter optimization step iterates over Model until the best hyperparameters are obtained. Experiments are then designed 580 
to compare performance of different model architectures after tuning their hyperparameters. 
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Figure 10: An ‘Experiment’ which compares ARG prediction performance at a recreational beach in Korea, using various machine 

learning algorithms. The y-axis represents abbreviations of the algorithms. The complete names of algorithms are given in Table 

S4. The hyperparameters of each of the algorithm were optimized during the ‘Experiment’. 585 
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